Technical Report #1

Administration Building

Justin Purcell

Structural

AE Faculty Consultant: Dr Hanagan

Pennsylvanía

October 5, 2007

TABLE OF CONTENTS

Executive Summary
Structural System Overview4
Codes
Loads
Typical Framing Plan
Design mpacts9
Wind Loading 10
Seismic Loading 16
Spot Check-Composite Beam
Spot Check-Column
Spot Check-Braced Frame

EXECUTIVE SUMMARY

The purpose of this report is to describe the physical existing conditions of the structure used for the Administration Building in Pennsylvania. It will provide an overview of all the structural components and the loads used in the design of the building. The loads were modeled using the most up-to date code, which is ASCCE 7-05.

The Administration Building consists of a composite metal deck supported by wideflange beams, girders, and columns. The columns transfer the load to spread footings throughout the building. The basement level utilizes slab on the grade as the floor. At the roof level, this consists of wide-flange beams in-combination with open-web steel joists. The last framing aspect is the concentric braced frames used to resist lateral loads.

A wind analysis was performed for all sides of the building using the Main Wind-Force Resisting System. Along the long direction we obtained wind pressures in the mid twenties as the max pressure towards the top of the building. Being that the Administration Building is located in Pennsylvania, the wind was the controlling factor in the lateral system design.

Just like the wind analysis, a seismic analysis was performed for the building. Using ASCE 7-05 to determine the loading along the building, I was able to obtain the base shear and overturning moment. Like I mentioned above, the seismic was not the controlling factor for the lateral system.

Last but not least, spot checks of a composite beam, column and braced frame were performed. The composite beam was found to be sized properly, so I assumed I used the right loads for a typical floor. The typical column was adequate with some strength to spare. The braced frame was also found to be adequate to resist the wind load with a lot of extra strength left over. Overall, everything I checked was adequate based on my assumptions and analyses.

STRUCTURAL SYSTEM OVERVIEW:

FOUNDATION:

The foundation system will consist of reinforced concrete spread footings that are sized utilizing bearing capacities ranging from 4,000 psf at soil bearing footings and 15,000 psf at rock-bearing footings. Total building settlements will be less than 1" with differential settlements not exceeding ½" or 1/300, based on a 20' bay. Typical perimeter frost walls are supported on continuous reinforced concrete strip footings. Foundation walls at basement or below grade levels are reinforced concrete basement walls designed for soil lateral loads and appropriate surcharge loads and supported by continuous reinforced concrete strip footings. These walls are drained on the soil side to minimize lateral surcharge loads on the walls and buildings. The slab on grade varies between a 5", 6" and 8" thickness, typically with 6x6-W4.0xW4.0 W.W.F.

FLOOR SYSTEM:

The structural floor system is 3¹/₄" concrete slab on a 3", 20 gauge composite metal deck with ³/₄" steel studs, supported by wide-flange beams and wide-flange columns. The typical sizes of the beams range from W18x40 to W30x116. The girders range from W21x50 to W27x146. The columns range from W10x43 to W14x211. The concrete is normal weight (147 pcf), cast-in-place concrete and will have a 28 day strength of 4,000 psi. The concrete slab is reinforced with 6x6-W2.9xW2.9 W.W.F. to minimize plastic shrinkage cracking. The thickness of the concrete is established based on the required 2 hour fire rating for the floor construction without spray fireproofing applied to the underside of the metal deck. Structural steel shall comply with ASTM A572, Grade 50. Steel stud shear connectors shall conform to ASTM A108.

To maintain the 5'-0" building module within the typical bay sizes of 20'-0" and 40'-0", the typical beams supporting the composite slab are spaced at 10'-0" on center. These beams supporting the composite slab for the typical bays span to girders oriented across the width of the building. The wide flange steel girders in the long direction or the building support the wide flange steel beams that span the 3 bay width of the building consisting of (1) 20'-0" and (2) 40'-0" bays. Spanning the beams across the width of the building works best in combination with a braced frame lateral load resisting system.

ROOF SYSTEM:

The structural roof system consists of a 1¹/₂", 20 gauge, Type B, galvanized metal roof deck with spray fireproofing. Below mechanical equipment a concrete slab on composite metal deck is used instead of the standard roof deck and the concrete slab is reinforced with 6x6-W2.9xW2.9 W.W.F. to minimize shrinkage cracking. The framing members supporting the metal deck are either open-web joists or wide flange steel beams at 4'-0" and 5'-0" centers. The beams supporting the composite slab are wide flange steel beams at 10'-0" centers that span the width of the building.

LATERAL SYSTEM:

The typical composite steel-framed building utilizes a braced frame lateral load resisting system. The braced frames have been coordinated, located and configured to integrate with the architectural layout and mechanical distribution. These frames consist

of wide flange columns, wide flange beams at each story and one HSS (hollow structural section) diagonal braces between each story. Typically the HSS braces will be HSS8x6x1/2.

EXTERIOR WALL SYSTEM:

Pre-fabricated brick truss panel assemblies comprised of structural tube and stud infill, steel relieving lintels, and shop-applied exterior brick face. There was a nine-month lead-time for brick materials. This system is independent of the floor and roof framing thus enabling smaller spandrel beam sizes.

CODES:

-2000 International Building Code
-American Institute of Steel Construction (AISC) standards

-Architecturally Exposed Structural Steel-Section 10

-Specifications for Structural Steel Buildings – Load and Resistance Factor Design

-AWS Structural Welding Code

-Detailing, Fabrication and Erection – Specifications and Codes
-Steel Joist Institute (SJI)

-Specification Section 05200

-American Concrete Institute (ACI) standards
-American Society for Testing and Materials (ASTM) standards
-Independent Testing and Inspection Agency

ADOPTED CODES:

-American Society of Civil Engineers 7-05 (ASCE 7-05)

LOADS

FLOOR LIVE L	OAD:	
ROOM	MIN DESIGN LOAD (PSF) ASCE7-05	DESIGN LOAD
Fitness Center	100	100
Lobbies	100	100
Stairs and Exits	100	100
Offices	50	100
Dining Room	100	100
Mechanical Rooms	N/A	150
	100-FIRST FLOOR 80-ALL OTHER	
Corridors	FLOORS	100
Roof	20	30

FLOOR DEAD LOAD:

ITEM	DESIGN VALUE
CONCRETE SLAB	42 PSF
SUPERIMPOSED DEAD LOAD	30 PSF
STEEL STRUCTURE + DECK	15 PSF
EXTERIOR BRICK TRUSS PANEL	40 PSF

ROOF SNOW LOAD:

ITEM	DESIGN VALUE	CODE BASIS
ROOF LIVE LOAD	30 PSF	ASCE7-05
GROUND SNOW LOAD (Pg)	30 PSF	ASCE7-05
FLAT ROOF SNOW LOAD (Pf)	24 PSF	ASCE7-05
SNOW EXPOSURE FACTOR (Ce)	0.9	ASCE7-05
SNOW IMPORTANCE FACTOR (I)	1.2	ASCE7-05

TYPICAL FRAMING PLAN

DESIGNIMPACTS

The Administration Building is a steel framed building with a concrete slab floor. Being a steel building, it only makes sense for the lateral system to be a concentric braced frame using Hallow Structural Section (HSS) as the braces. For the design, the use of Load and Resistance Factor Design (LRFD) was used. I believe these choices were made based on cost and the typical design that the structural engineer decided upon to use. Steel is a little more expensive than concrete but it can be put up a lot quicker and that is where the executive decision to use steel was made. The use of LRFD was chosen by the structural engineer as the code they will design by as a company.

The impact on using braced lateral frames is figuring out how much force each braced frame takes. If you used a shear wall, 100% of the lateral load would go to that one shear wall. Since the building is in Pennsylvania, wind is going to be bigger impact on the building compared to seismic. So wind is going to be very important in my design/analysis of the building. Finally, the last impact is the use of an older code that was implemented. My analysis of the building will be using ASCE 7-05 which is a much newer version than the code that used originally used.

WIND LOADING

Page 10 of 26

WIND
I.
I.

$$560'$$

 $w_{11} + 10 - 37 & 6.5.7$
 $w_{12} + 10 - 37 & 6.5.7$
 $w_{12} + 10 - 37 & 6.5.7$
 $w_{12} + 10 - 37 & 6.5.7$
 $-21600 = FWD. FGCA $G \to 6.5.8$
 $-21600 = FWD. FGCA $\Xi + H_{2}$
 $T_{3} = (c_{3}h_{3}^{4})$
 $= 0.08(07)^{0.6} = 0.81_{5} - 37 & 1_{76} = 1.24$ Hz
 $\rightarrow Z_{1001D}$
 $(g = 0.925 (\frac{(1 + 179_{10} T_{3} - 3)}{1 + 179_{10} T_{2}})$
 $T_{2} = (\frac{32}{45})^{1/4}$ $= 0.66 \times 2.213'$
 $= 0.194$
 $g_{4} = g_{4} = 3.4$
 $g = 0.194$
 $g_{4} = 5.43.5'$
 $h = 67'$
 $h = 67'$
 $h = 67'$
 $h = 67' (\frac{3}{25})^{1/2} = 5500' (\frac{1002}{33})^{1/2} = 520.15'$
 $Q = \sqrt{\frac{1}{1 + 0.63(\frac{200.5^{1/4}}{520.15^{1/4}})} = 0.87$
 $Q = 0.75 (0406F 0, 40070)$$$

```
3
                                            WIND
                       67 = 0.93 ( SHORT DIRECTION)
                      (7 = 0.925 \left( \frac{(1 + 1.7(3.4)(0.194)(0.87))}{1 + 1.7(3.4)(0.194)} \right) = 0.86
                   · ENCLOSURE LLASSIFICATION -57 6.5.9
                        -> ENLLODED
                   · INTEENAL PRESSURE COEFFICIENT, GCP: -76.5.11.1
                         GCP2 = + 0.18
                                   - 0.18
                  · EXT. PRESSURE LOGFFILIENTS Lp OR Grapt -7 6.5.11.2/3
                        - WALL
                                    PREDSURE, CP
                             WINDWARD WALL = 0.8 - 7 q_{1}
LEEWARD WALL = -0.3 - 7 q_{1}
SIDE WALL = -0.7 - 7 q_{1}
                       -ROOF PRESSURES UP
                              0 - h_2 = -a.q / -0.18
h_2 - h = -0.q / -0.19
(
                              h - zh = -0.5/-0.18
                              > 2h = -0.3/-0.18
```

```
WIND
                                                  4
 · VELOCTY PRESSURE 9 OR 9 - 6.5.10
    9 = 0.00256K2 K24Kd V2I
         KJ = 0.85
                         I = 415
         K26 = HO
         K2 = REFOR TO CHART
         V=90
    92 = 20.3 K2 -
   9h = 20.3(1.17) - 23.75
· DESIGN WIND LOAD p - 6.5.12/13/14/15
     P=qGrLp - q; (GrCpi) -> PSF
       9=92 FOR WIND WARD WALLS
       9 = 9 FOR LEGWARD WALLS
      9: = 9, FOR (-) INT. PREDURE
      917 92 FOR (+) INT. PREBURE
      G7 = 0.86
      Lp = 0.8
      G(pi = + 0.18/ - 0.18
```


WIND PRESSURES

			P(SHORT	P(LONG
HEIGHT(FT)	Kz	qz	DIRECTION, PSF)	DIRECTION, PSF)
0-15	0.85	17.255	18.1	19.3
15-20	0.9	18.27	18.9	20.1
20-25	0.94	19.082	19.6	20.9
25-30	0.98	19.894	20.3	21.6
30-40	1.04	21.112	21.2	22.6
40-50	1.09	22.127	22.1	23.5
50-60	1.13	22.939	22.7	24.2
60-70	1.17	23.751	23.4	24.9

WINDWARD WALL PRESSURE – M.W.F.R.S.

LEEWARD WALL PRESSURE – M.W.F.R.S.

DIRECTION	PRESSURE (PSF)
LONG	-9.4
SHORT	-15

SIDEWALL PRESSURE – M.W.F.R.S.

DIRECTION	PRESSURE (PSF)
LONG	-19.3
SHORT	-18.1

SEISMIC LOADING

ITEM	DESIGN VALUE
SITE CLASS	С
SPECTRAL RESPONSE	
ACCELERATION AT SHORT PERIODS	
(Ss)	0.328
SPECTRAL RESPONSE	
ACCELERATION AT PERIOD OF 1s (S1)	0.008
SHORT PERIOD SITE COEFFICIENT (Fa)	1.2
LONG PERIOD SITE COEFFICIENT (Fv)	1.7
DAMPED SPECTRAL RESPONSE	
ACCELERATION AT SHORT PERIODS	
(Sds)	0.26
DAMPED SPECTRAL RESPONSE	
ACCELERATION AT PERIOD OF 1s	
(Sd1)	0.0091
	CONCETRICALLY
SEISMIC RESISTING SYSTEM	BRACED FRAMES
RESPONSE MODIFICATION	
COEFFICIENT, (R)	5
OVERSTRENGTH FACTOR	2
DEFLECTION AMPLICATION FACTOR	4.5
IMPORTANCE FACTOR	1.25
OCCUPANCY CATEGORY	3
SEISMIC DESIGN CATEGORY	В
BASE SHEAR	566 (K)

BASE SHEAR:

	DEAD LOAD	WALL DEAD LOAD	FLOOR AREA				
FLOOR	(PSF)	(PSF)	(SF)	WALL AREA	W(k)	Cs	V=CsW
1	100	40	50000	0	5000	0	50
2	100	40	113680	10507	11788.28	0	117.883
3	100	40	113680	21014	12208.56	0	122.086
4	100	40	113680	21014	12208.56	0	122.086
5	100	40	113680	21014	12208.56	0	122.086
ROOF	24	40	113680	10507	3148.6	0	31.486
TOTAL					56562.56		565.626

SEISMIC LOAD DISTRIBUTION:

FLOOR	W(k)	hx(FT)	Hx^k(Wx)	Cvx	Fx=CvxV	Mx=hx*Fx (K-FT)
1	5000	20	2000000	0.01142	6.463919	129.2783873
2	11788	33.33	13095158.4	0.074776	42.32302	1410.626385
3	12209	46.67	26592287.4	0.151847	85.9452	4011.062517
4	12209	60	43952400	0.250976	142.0524	8523.143088
5	12209	73.33	65651320.2	0.374881	212.1824	15559.33686
ROOF	3149	87	23834781	0.136101	77.03305	6701.87546
TOTAL	56563		175125947	1	566	36335.3227

Purcell-Technical Report #1

	5613416
7	
Ę	DEIDMIC
	· SITE LLASS (-> 67' TALL ABOVE GRADE
	$-5_{5} = 0.328g$
	5, = 0.008g
<i></i>	· Fa = 1.2
2	FV = 1.7
Ă.	· 5M3 = Fa:53 = 1.2(0.328) = 0.3936
	$5_{M_1} = F_{V} \cdot 5_1 = 1.7(0.008) = 0.0136$
	· 505 = (2/3) 5M5 = 0.26
Ć	501 = (2/3) 5m1 = 0.0091
2	· COMPOSITE STEEL + CONCRETE CONCENTRICALLY BRALED FRAMES
	R = 5
	$\mathcal{R}_{o} = \mathcal{I}$
	Ly = 4.5
	· I = 1.25 - OCCUPANCY CAT. III
	· SEISMIC DESIGN CATEGORY B
1 and	

SEISMIC 2 · DESIGN BASE SHEAD V=CS.W - Ta = Ly ha = 0.028 (67') = 0.813 - LuTa = 1.7(0.01) = 1.38 - T_ = 63 505 (R/2) = 0.24 (5/1.25) + 0.065 - 4, Z 50, / [+(R/I)] = 0.009//(0.8/(5/1.25)) = 0.6028 $\frac{S_{D1} \cdot T_2}{T^2(R|T)} = \frac{0.0091(b)}{T^2(R|T)} = 0.021$ (0.81) 2 (5/1.25) (3 = 6.0028 6 0.01 -> 0.01 - W: . FLAT SNOW ROOF LOND = 24 PSF · TYP. FLOOR : - 42 PSF LONG. SLAB - 30 PSF 50L - 15 PSF STEEL STRUCTURE + MOTAL DUCK - 13 PSF PARTION LOAD 100 PSF - WALLS · BRICK TRUSS PANEL = 40 PSF - AREAS; - TYPICAL FLOOR: 560'x 203' = 13,680 FT2 -TYPICAL WALL: 560'(133)2 + 203(133)2 = 21,014 FT2 - BASEMENT: 50,000 FT2

	SEISMIL	3
(- VE CON -> REFER TO THB	L. C.
	- VERTICAL DISTRIBUTION OF F - Fx = Cvx V	⁶ 0 R.C. E J
	$C_{VX} = \frac{W_x h_x^{K}}{Z W_i h_i^{K}}$	
	hi = 87' Wi = 56,563 h	
(- OVERTORNING MOMENT = 36,33	6 w-++
(
	•	

SPOT CHECK-COMPOSITE BEAM

	SPOT CHECK 2
Ĺ	$\frac{BM}{A} = \frac{265(10') = 2.7 \text{ KLF}}{\sqrt{1 + 1 + 1}}$ $\frac{W_{21} \times 44 \text{ L}_{34}}{W_{0}}$
an An trut	$V_{max} = \frac{PL}{2} = \frac{2.7\kappa LF(40)}{2} = 54^{\kappa}$ $M_{max} = \frac{11}{8} = \frac{2.7\kappa LF(40)}{8}^{2} = 540^{\kappa-FT}$
	376 SLAB NWL 3" MOTAL DELK f ¹ L= 4000 PDI Fy = 50,000 PDI
	TRY TFL WY YZ = 5" (\$Mn = 746 *-++, 200 = 649 K)
¢,	$b_{c+f} = \frac{40'(12)}{4} = 120'' \longrightarrow b_{c+f} = 120''$
	$IO'(12) = I2O''$ $T_{5} = A_{5} Fy = I3' In^{L} (50 K s) = 650^{K}$ $C_{1} = 0.85(1^{L}c) b_{clf}(\alpha) = 649^{K}$ $\alpha = \frac{20n}{0.85(1^{L}c) b_{clf}} = \frac{649^{K}}{0.85(4^{K}s)}(120'')$ $Y_{2} = 6.25 - \frac{159^{H}}{2} = 5.455^{H} = 5''$ $M_{n} = T_{5}(\frac{d}{2}) + C_{1}(\frac{4}{5}-95) = 854.78^{K}$
	\$Mn = 0.9(854.78) = 769 x-t+
s. d	Y2 = 5,5" →> \$ Mn = 771 7 769 K-++ @ TFL >

Page 22 of 26

SPOT CHECK-COLUMN

	SPOT CHECK 3
(· COL D-42 = W14 × 211 H = 20'
	LL = 100 PSF
	SUPPORTS W FLOORS
	$A_T = (00'(200')) = 4,800 = 7^2$
	K _{LL} = 4 -> TABLE 4-2
7	$L = L_0 \left(0.25 + \frac{15}{\sqrt{\kappa_{LL} A_T}} \right) = 0.4L_0$
	= 0.25 + 15 = 0.3540 4 0.442 N.67.
	L = 0.4 (100 PSF) = 40 PSF
\langle	1.40 = 1.4 (87) = 122 PSF
	1.20 1 1.66 × 1.2(87) + 1.6(40) = 169 P>F *
	PU = 169PSF(H800 FT2) = 812 Kr
	$FEM_{AB} = \frac{WL^2}{12} = \frac{6.8 \times LF(20)^2}{12} = 727^{K-M}$
,	$FEM_{DL} = \frac{42}{12} \frac{(40)^2}{12} = 961^{k-FT}$
Ű	DFEM = 901-227 = 674 K-FT

Purcell-Technical Report #1

	SPOT LHECK	Ч
	$VV 14 \times 211$ $dP_n = 2160^{16}$ $dM_p = 1460^{16}$ $P_0 = 812^{16}$	
	$\frac{P_{v}}{P_{n}} = \frac{812}{2160} = 0.38 \rightarrow EQ HI - 1A$ $\frac{P_{v}}{P_{n}} = \frac{812}{2160} = 0.38 \rightarrow EQ HI - 1A$ $0.38 + \frac{8}{9} \left(\frac{674}{1460}\right) = 0.79 LI$	
(

SPOT CHECK-BRACED FRAME

Purcell-Technical Report #1

	SPOT LHELK 6
11	• BRALLD FRAMED IN SHORT DIRECTION - BF-H E-F \rightarrow 10%. - BF-R D-F \rightarrow 20%. - BF-14 D-F \rightarrow 20%. - BF-16 D-G7 \rightarrow 30%. - BF-18 C-D \rightarrow 20%. ASDUMPTION
	59°
($\frac{59^{\circ}}{10^{\circ}} = 7 + 15^{\circ}$ $(05(31))^{10^{\circ}} = 9 + 15^{\circ}$
	OR AXIAL COMPRESSION: $\frac{10}{C0559} = 20^{11} 4278^{11}$
(х Х